
3N211 Datasheet

6367254 MOTOROLA SC (XSTRS/R F)

96D 82620 D T-31-25

3N211
3N212
3N213

CASE 20-03, STYLE 9 TO-72 (TO-206AF)

DUAL-GATE MOSFET VHF AMPLIFIER

N-CHANNEL --- DEPLETION

Refer to MPF211 for graphs.

Max Unit

MAXIMUM RATINGS

Rating	Symbol	3N211 3N212	3N213	Unit
Drain-Source Voltage	V _{DS}	27	35	Vdc
Drain-Gate Voltage .	V _{DG1} V _{DG2}	35 35	40 40	Vdc
Drain Current	ΙĐ	50		mAdc
Gate Current	IG1 IG2	±10 ±10		mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	360 2.4		mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	1.2 8.0		Watt mW/°C
Lead Temperature, 1/16" From Seated Surface for 10 seconds	TL	300		°C
Junction Temperature Range	TJ	-65 to +175		°C
Storage Temperature Range	T _{stg}	65 to	+ 175	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic

OFF CHARACTERISTICS

		-,		1	
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage(1) (ID = 10 μAdc, V _{G1S} = V _{G2S} = -4.0 Vdc)	3N211,212 3N213	V(BR)DSX	25 30	_	Vdc
Instantaneous Drain-Source Breakdown Voltage) (ID = 10 μ Adc, VG1S = VG2S = -4.0 Vdc)	3N211,212 3N213	V _{(BR)DSX}	27 35	1 1	Vdc
Gate 1-Source Breakdown Voltage(2) (I _{G1} = ±10 mAdc, V _{G2S} = V _{DS} = 0)		V(BR)G1SO	±6.0	_	Vdc
Gate 2-Source Breakdown Voltage(2) (IG2 = ±10 mAdc, VG1S = VDS = 0)		V(BR)G2SO	±6.0		Vdc
Gate 1 Leakage Current (VG1S = ±5.0 Vdc, VG2S = VDS = 0) (VG1S = -5.0 Vdc, VG2S = VDS = 0, T _A = 150°C)		I _{G1SS}	<u>-</u>	±10 ~10	nAdc μAdc
Gate 2 Leakage Current (VG2S = ±5.0 Vdc, VG1S = VDS = 0) (VG2S = -5.0 Vdc, VG1S = VDS = 0, TA = 150°C)		IG2SS	=	±10 -10	nAdc μAdc
Gate 1 to Source Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, I_{D} = 20 \mu\text{Adc})$	3N211,213 3N212	VG1S(off)	- 0.5 0.5	-5.5 -4.0	Vdc
Gate 2 to Source Cutoff Voltage $(V_{DS} = 15 \text{ Vdc}, V_{G1S} = 0, I_{D} = 20 \mu\text{Adc})$	3N211 3N212,213	V _{G2S(off)}	-0.2 -0.2	2.5 4.0	Vdc
ON CHARACTERISTICS					
Zero-Gate-Voltage Drain Current(3) (VDS = 15 Vdc, VG1S = 0, VG2S = 4.0 Vdc)		IDSS	6.0	40	mAdc
SMALL-SIGNAL CHARACTERISTICS					
Forward Transfer Admittance(4) $(V_{DS} = 15 \text{ Vdc}, V_{G2S} = 4.0 \text{ Vdc}, V_{G1S} = 0, f = 1.0 \text{ kHz})$	3N211,212 3N213	lYfsl	17 15	40 35	mmhos
Reverse Transfer Capacitance (VDS = 15 Vdc, VG2S = 4.0 Vdc, ID = 1.0 mAdc, f = 1.0 MHz)		C _{rss}	0.005	0.05	pF
FUNCTIONAL CHARACTERISTICS					
Noise Figure $\{V_{DD} = 16 \text{ Vdc, } V_{GG} = 7.0 \text{ Vdc, } f = 200 \text{ MHz}\}$ $\{V_{DD} = 24 \text{ Vdc, } V_{GG} = 6.0 \text{ Vdc, } f = 45 \text{ MHz}\}$	3N211 3N211,13	NF	_	3.5 4.0	dB

T-31-25

3N211, 3N212, 3N213

Characteristic		5ymbol	Min	Max	Unit
Common Source Power Gain (V _{DD} = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz) (V _{DD} = 24 Vdc, V _{GG} = 6.0 Vdc, f = 45 MHz) (V _{DD} = 24 Vdc, V _{GG} = 6.0 Vdc, f = 45 MHz) (V _{DD} = 18 Vdc, f _{LO} = 245 MHz, f _{RF} = 200 MHz)	3N211 3N211 3N213 3N212	G _{ps}	24 29 27 21	35 37 35 28	dB
Bandwidth (VDD = 18 Vdc, V _{GG} = 7.0 Vdc, f = 200 MHz) (VDD = 18 Vdc, f _{LO} = 245 MHz, f _{RF} = 200 MHz) (VDD = 24 Vdc, V _{GG} = 6.0 Vdc, f = 45 MHz)	3N211 3N212 3N211,213	BW	5.0 4.0 3.5	12 7.0 6.0	MHz
Gain Control Gate-Supply Voltage(5) $(VDD = 18 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 200 \text{ MHz})$ $(V_{DD} = 24 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 45 \text{ MHz})$	3N211 2N211,213	VGG(GC)	=	-2.0 ±1.0	Vdc

⁽¹⁾ Measured after five seconds of applied voltage.

(2) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting network is functioning properly.

(3) Pulse Test: Pulse Width = 300 \(\mu_s\), Duty Cycle < 2.0%.

(4) This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to gate 1 with gate 2 at ac ground.

(5) \(\Delta G_{ps}\) is defined as the change in G_{ps} from the value at V_{GG} = 7.0 Volts (3N211) and V_{GG} = 6.0 Volts (3N213).

(6) Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum G_c.